High-performance graphene-quantum-dot photodetectors

نویسندگان

  • Chang Oh Kim
  • Sung Won Hwang
  • Sung Kim
  • Dong Hee Shin
  • Soo Seok Kang
  • Jong Min Kim
  • Chan Wook Jang
  • Ju Hwan Kim
  • Kyeong Won Lee
  • Suk-Ho Choi
  • Euyheon Hwang
چکیده

Graphene quantum dots (GQDs) have received much attention due to their novel phenomena of charge transport and light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Thus, the demonstration of photodetection gain with GQDs would be the basis for a plenty of applications not only as a single-function device in detecting optical signals but also a key component in the optoelectronic integrated circuits. Here, we firstly report high-efficient photocurrent (PC) behaviors of PDs consisting of multiple-layer GQDs sandwiched between graphene sheets. High detectivity (>10(11) cm Hz(1/2)/W) and responsivity (0.2 ~ 0.5 A/W) are achieved in the broad spectral range from UV to near infrared. The observed unique PD characteristics prove to be dominated by the tunneling of charge carriers through the energy states in GQDs, based on bias-dependent variations of the band profiles, resulting in novel dark current and PC behaviors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of High Temperature GaN Quantum Dot Infrared Photodetectors

In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...

متن کامل

Emerging technologies for high performance infrared detectors

Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few de...

متن کامل

Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivit...

متن کامل

Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors

Related Articles GaN/AlGaN waveguide quantum cascade photodetectors at λ ≈ 1.55μm with enhanced responsivity and 40GHz frequency bandwidth Appl. Phys. Lett. 102, 011135 (2013) Optimization of thickness and doping of heterojunction unipolar barrier layer for dark current suppression in long wavelength strain layer superlattice infrared detectors Appl. Phys. Lett. 102, 013509 (2013) Metal-semicon...

متن کامل

Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector ...

متن کامل

High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction

Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014